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ABSTRACT

The visual looming effect, i.e., expansion of object’s size in the retina, has been

shown to be very important when action is taking place. Most existing research work

on "looming" has been done by psychologists and is qualitative or limited-quantitative.

In order to use the existing results for robotics applications, a more mathematically-

oriented approach for looming is needed. In this paper we take a quantitative approach

to understanding looming. First we define looming mathematically and show geometri-

cal properties of objects that produce the same value of looming. Then we explain

how to measure looming in the general case of motion using optical flow and the

change of the projection of a 3-D object on the retina. It is shown how a multiresolu-

tion logarithmic retina simplifies the measurement of looming, and how the results can

be combined with previous work on visual fields. We suggest a new representation of

space based on looming and the so called Equal Flow Circles (EFCs).

This research was supported in part by a grant from the National Science Founda-

tion to Florida Atlantic University (Grant #IRI-9 115939).





1. INTRODUCTION

The Random House dictionary defines looming as: "Coming into view in indistinct

and enlarged form; rising before the vision with an appearance of great or portentous

size". Although this definition is a qualitative one, it is clear that it deals with expan-

sions of objects on the retina. Usually, expansion of object’s size on the retina is a

result of a decreasing distance over some period of time between the observer and the

object.

The perception of looming which is an indication for possible collision is critical

to survival for creatures of nature. It is necessary for locomotion in a complex natural

3-D world. The reaction to this visual stimulus is the result of some kind of "perceived

threat", i.e., the measured relative rate of expansion of objects on the retina corresponds

to a visual timing parameter that causes the subject to defensively react to reduce the

visual threat.

Looming and looming-related actions have been studied by many researchers,

mainly psychologists [1-24], but most of the work is qualitative or limited-quantitative

[9]. The looming effect [20,45], which is the result of optical expansion of objects, has

shown to cause defensive reaction in several animals as well as babies [6,20]. In

several reported experiments the subjects’ use of visual information in the last few hun-

dreds of milliseconds before a collision occurs was examined.

In order to use the existing results for robotics applications, a more

mathematically-oriented approach for looming is needed.

Lee [9,10] and his colleagues [11-14] showed how to quantitatively measure the

"time-to-contact" from optical flow for an observer who undergoes only translation

when the optical axis coincides with the motion vector. Extensions of the time-to-

contact concept were recently reported in [25,26]. Our definition of looming is related

to, but different from, the time-to-contact. The time-to-contact according to [9] is the

time it takes for an observer to hit a specific plane perpendicular to the direction of

motion, i.e., it deals with the relative change of the depth (as opposed to range).
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Assume an observer moving in a 3-D environment filled with several balls (Figure

1). During the motion of the observer relative to the balls, both the size of each ball

and the location its centroid, when projected into the image, are continuously changing.

If the distance between a ball and the center of the camera decreases then the projected

image of the ball will increase in area. The relative rate of expansion of the area over

time of the imaged ball causes the "looming" effect and it is proportional to the time

derivative of the relative distance (range) between the observer and the ball divided by

the relative distance (range) itself. The looming is a measurable variable and can be

extracted directly from a sequence of 2-D images using optical flow, relative change in

area, etc.

In this paper we approach looming from quantitative as well as qualitative points

of view. We start with a mathematical definition of looming, followed by an expres-

sion for looming in vector form. We show that looming is rotation independent and

that there are equal looming spheres each of which corresponds to a value of looming.

In other words, each point on a particular equal-looming sphere appears as having the

same looming regardless of the instantaneous rotation of the camera. We introduce

several methods for measuring looming, using optical flow as well as the expansion of

the projection of objects on the retina. We describe camera-centered coordinate systems

that are used here, and derive expressions that relate optical flow and distance of a

point to six-degree-of-ffeedom camera motion. When the optical flow constraint (as

described by Horn and Schunck [36]) is added to these equations, a pixel-based

closed-form solution for the looming of a point in the camera coordinate system is

obtained. The rate of expansion of projected objects is another method introduced to

measure looming.

It is shown that by using a logarithmic retina to measure looming, many computa-

tions become significantly simpler, and that the computations are independent of the

object’s size. The analysis becomes even simpler when dealing with looming and

fixation. A mapping of space is suggested using equal looming spheres and Equal

Row Circles (EFCs, as described in [63]).
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The work described in this paper is highly related to the area called "Active

Vision", in particular purposive quantitative as well as qualitative vision, since it can be

used to actively control the viewer’s parameters. [30,31,33-35,57,66].

2. MATHEMATICAL DEFINITION OF LOOMING

Let a camera and an object (e.g., a ball) move arbitrarily in a 3-D environment

(Figure 2a). Then at two different time instants they may be in different relative loca-

tions. The distance (range) from the center of the ball to the pinhole point of the cam-

era may change, thus resulting in different sizes of projected images. Figure 2b shows a

3-D ball and its images at two different time instants. The looming effect is caused by

the expansion of the projected ball. Intuitively, the relative rate of expansion, i.e., the

A 2—A i

relative change of the projection of the ball over the period of time t 2-t x
in

A
\

which the change takes place, is highly related to the relative change of the range

/?!-/? 2

R
during the same period of time. (In fact, for objects that are small relative to

their range from the observer, they are proportional, i.e., differ by a scale factor.) Thus

one can define looming in terms of the relative change in range instead of relative

change in the object’s projection.

In order to mathematically define looming and suggest ways to measure it we

shall consider infinitesimally small 3-D balls. Let the relative distance between the

observer and a point P (the center of the infinitesimally small ball) at time instant be

R
j
and at time instant 12 be R 2 (Figure 3). Then, we define looming L as the nega-

tive value of the time derivative of the relative distance between the observer and the

point P , divided by the relative distance R , i.e..

(R 2~R i)

L = - lim
A/-»0

At

*1
0 )

where At = t2 - ty Or

(2)
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where dot denotes derivative with respect to time. The reason for the negative sign in

Equations (1) and (2) is to associate image expansion with positive looming.

This definition allows the use of the term "looming of a point" for describing the

—R
value of L (i.e., ——) of a point

R

3. LOOMING IN VECTOR FORM

3.1 STATIONARY ENVIRONMENT

Assume a moving observer in a stationary environment Let the instantaneous

vector from the observer to a stationary point P be R, the instantaneous translational

velocity vector of the camera be t and the instantaneous angular velocity vector of the

camera be © (Figure 4). Then the expression for the velocity vector V of point P in

camera coordinates is (see for example [51]):

V = - t - co x R (3)

The general expression for the looming L in vector form is:

L
VR
RR

or

L
VR
IR I

2

(4)

The last expression is identical to the expression in Equation (2) for the following rea-

R
sons: is a unit vector along the line that connects the observer with the point in

R R
3-D. V'-j^y is the projection of the velocity vector V along the direction, i.e., it

is R . Hence
VR R

\R I

2 R '

By substituting (3) into (4) the expression for the looming L becomes:

(- t - © x R) R
L = -

RR (5)

(co x R) R = 0 (since the vector © x R is always perpendicular to the vector R) and
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thus expression (5) becomes:

L = t R
R R (6)

In the expression for looming (Equation (6)) neither the distance nor the velocity

between the observer and the point in space need to be explicitly known. Only the

ratio between the two dot products needs to be known. The expression is time depen-

dent only, i.e., L is measured in [rime
-1

] units.

Note that the result for L in Equation (6) is a scalar which is dependent on the

camera translational component of the velocity vector, but independent of any camera

rotation.

3.2 MOTION OF A CAMERA AND POINTS

In the case where both the camera and the point are moving, we can always

analyze it as if the point is stationary and the camera undergoes translation and rota-

tion. The translation vector of the camera relative to the "artificially" stationary point

is clearly the result of subtracting the point translation vector from the camera transla-

tion vector. For looming computation the rotation is not relevant, and thus only the

relative translational information between the observer and the point is relevant for any

kind of relative motion between the observer and the point. The same result is true for

motion of a camera and a 3-D rigid object.

4. EQUAL LOOMING SURFACES

In this section we answer the following question: "What is the location of points

in 3-D space that result in the same looming value L for any motion of the camera?"

4.1 GENERAL MOTION OF CAMERA

Let us set the value of the looming expression (Equation (6)) to a constant and

obtain the equal looming surfaces. If the angle between t and R is a then Equation (6)

becomes:

r It I (H\L = —cosa (7)
A

where It I is the absolute value of the vector t. Without loss of generality attach an
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XYZ coordinate system to the observer such that the Y axis coincides with the instan-

taneous vector t as in Figure 5. In this case cosa = , — and R - Vx 2
+y

2+z 2
.

Vjc
2
+y

2+z 2

Substituting these expressions into Equation (7) yields:

L = Itly

x 2
+y

2+z 2 (8)

or

x 2 + (y
It!

2
2 Jtl 2

2L>
+Z =(^ (9)

Equation (9) is an equation of a sphere whose center is located at (0,— ,0) and its

radius is ™~-. The center of the sphere lies on the instantaneous translation vector,

and the observer lies on a point of this sphere (the origin of the coordinate system in

Figure 5). Note that this sphere corresponds to a particular looming value, i.e., all

points on this sphere result in the same value of L. Depending on It! this sphere will

expand or shrink in 3-D. Figure 6 shows points in 3-D that produce the same looming

value, and Figure 7 shows the location of the equal looming points for different loom-

ing values. Each circle in Figures 6 and 7 is a section of an equal looming sphere.

4.2 POSITIVE-, NEGATIVE-, AND ZERO-LOOMING SURFACES

Of the equal looming surfaces some correspond to positive values of looming, oth-

ers correspond to negative values of looming and there is a plane (i.e., a sphere with

infinite diameter) that corresponds to zero looming. Figure 8 shows the three types of

surfaces. Points on the plane which is perpendicular to the instantaneous translational

vector and passes through the pinhole point of the camera produce zero looming.

Points on the hemisphere in front of the moving camera (i.e., in front of the zero-

looming plane) produce positive values of looming, and points on the hemisphere

behind the moving camera (i.e., behind the zero-looming plane) produce negative loom-

ing values. Note that the smaller the sphere the higher the absolute value of the loom-

ing. The different points shown in Figure 8 correspond to different L which depends

on their location. Note that at 0 = 45° the looming value is maximum and at 0 = -45°
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it is minimum. At these two angles the size of the sphere is minimal. The looming as a

function of the angle 0 (as defined in Figure 8) is graphically described in Figure 9.

5. LOOMING AND SCALED SPACE

As has been shown previously, the radii of the equal looming spheres are func-

tions of time (measured in reverse unit of time) and are not measured in length units.

This means that different spheres in 3-D may result in the same looming value when

dealing with different instantaneous translational velocity. For some direction 0, a far

point with large value of It I may have the same value of L as a close point with small

value of Itl. In the scaled space, i.e., in the time domain where the coordinates are

X Y Z
and

-jjy
(time-based coordinates) a single sphere represents a single looming

value regardless of the exact translational velocity.

6. MEASUREMENT OF LOOMING

We show two basic ways for measuring looming. One is based on optical flow

where the derivation is for any six-degree-of-freedom motion of a camera in a station-

ary environment. The second way is based on the relative rate of expansion of the

objects’ projections and holds for any kind of relative motion between the camera and

the object.

6.1 USING OPTICAL FLOW

6.1.1 EQUATIONS OF MOTION AND OPTICAL FLOW

This section describes the equations that relate a point in 3-D space to the projec-

tion of that point in the image for general six-degree-of-freedom motion of the camera.

The following derivation is for motion in a stationary environment. Some of the equa-

tions are well known [51,52].

Assume a moving camera in a stationary environment with the coordinate system

fixed with respect to the camera as shown in Figure 10. Assume a pinhole camera

model, such that the pinhole of the camera is at the origin of the coordinate system.

We derive the optical flow components in a spherical coordinate system (

R

0<J>). In this

frame, angular velocities (0 and <|)) of any point in space, say P, are identical to the
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optical flow values 0 and <j) of the projection of P (i.e., P’) in the image domain (Figure

11 ).

The relationship between the image flow values in the spherical domain is given

by the following equations. Let the instantaneous cartesian coordinates of the point P

be R = (X ,YZ )
T (where the superscript T denotes transpose). Let the instantaneous

translational velocity of the camera be t = (U ,V ,W)T and the instantaneous angular

velocity be CD = (AJ3,C)r . Then the velocity vector V of the point P with respect to

the XYZ coordinate system is as shown in Equation (3), i.e.,

V = -t-(oxR

or:

yx = U-BZ+CY (10)

Vy = -V-CX+AZ (ID

Vz = -W-AY+BX (12)

where Vx , Vy, and Vz are the components of the velocity vector V along the X, Y,

and Z directions respectively. Let s Q = sin0, c 0 = cos0, = sin<j), = cos(J),

and R — iRl. To convert from XYZ to R 0$ coordinates we use the relations:

X =R c^Cq (13)

Y = R c^Sq (14)

Z ~ R (15)

In order to find the optical flow of a 3-D point in R 0<j) coordinates, we use the follow-

ing relations and transformations (see [52] and Figure 10). Let VR , Ve , and be the

components of the vector V in spherical coordinates, then

Vr

1

oOo Cq Sq 0

Vb = 0 1 0 -Sq c 0 0

o'
uo

-©-
r

.

0 0 1

(16)

Also from [52]
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VR =/?,

Ve ^RQc^

V^ = R(
i>,

where dot denotes derivative with respect to time.

Using equations (10)-(19) the following expressions are obtained:

(17)

(18)

(19)

/? C^C 0 C^5 0 5^,
- U- B R Sty + C R Cty Sq

/? 0 C^| = “•*0 C @ 0 -V-C R CtyCQ + A R Sty

<j>
~

Sty Cq —StySQ C
0 -W- A R Cty Sq + B R CtyCQ

(20)

There are four unknowns in Equation set (20): RJR,Q, and <{>. For each pixel, 0 and
<J>

are known. The motion parameters (A J2 ,C ,U ,V ,W) are also known.

6.12 THE OPTICAL FLOW CONSTRAINT

If the brightness / varies smoothly with 0, <{), and t (time), then we obtain the opt-

ical flow constraint equation using the chain rule (see [36]):

or

where

M.Q + JL,j, + iL = o
30 3<>

v
31

^0 ® + ^6 4> + 7
/
= 0

(21 )

(22)

/« =
dl_

00
/ =*-
6

0<j>

I = *
''

Or'

When dealing with digital images /0 , /*, and I
t
can be approximated from the image

sequence as follows. For a given pixel (0, ,<j)
y

- ) in the image at time instant tk

0/ _ / (0;,<t>7
,tk )-I

00, 0,-0, _!

a/ _ i(Qi$j,tk)~ i(Qi$j-i,tk )

0<D, +J-+J-

(23)

(24)

0/ _
— / (Q, ,4>

y >^_i)

dtk h~h-

i

(25)
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6.1J LOOMING COMPUTATIONS

Equation set (20) together with equation (22) form a set of four equations with

four unknowns R, R, 6, and «j>. Solving these equations for R yields:

(Usq-Vc q)Iq+c^(Us tyC e+Vs^ e-Wc^ 4,R — —— ——————— — —— (26)“ c sjA
~ c ty(Bc q—As q)I

(j,
+ (Cc fy—s §(Bsq+Ac q))I@

Solving for R yields:

R = -Uc^Cq-Vc^q-Ws^ (27)

And by combining Equations (26) and (27) we get:

l - _ A - _ (c
'Uc e

~Vc^ Q
~Ws

4>)(
~ c^l

~ c^Bc Q-As QVt> + (Cc^-s^jBs e+Ac e))I B)

R (Us q-Vc q)I e+c q(Us ^

c

Q+Vs^ e-Wc ^)I
,,,

(28)

If the translation vector t forms 0=0, and <J)=<|), angles in the /?-©-4> coordinates (Fig-

ure 10) then U ,V , and W can be expressed as:

U = Itlc^CQ, (29)

V = Itlc^se, (30)

W = ltlj
0<

(31)

Using the last three expressions. Equation (28) can be rewritten as:

_ (c 0l

c
0|
c
0
c e+c 0,

s 0<

c
$
5 e+s 0,

J 0) (-c^-c^Bcq-Asq)^ + (Cc^-s^Bsq+Acq))^)

(c C
Q,
s Q~C

$,
s

Q,
c q)IQ+c $(C $,C Q,S tyCq+C fyS Q'S^ q~S fyC ^

(32)

The meaning of solution (32) is that if the location of the pixel in the image, the

instantaneous rotational motion parameters of the camera, the instantaneous transla-

tional direction of motion, and the spatial and temporal intensity-changes (i.e., changes

in brightness) are given, then the looming of the corresponding point in 3-D can be

obtained.
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At first inspection, 33 multiplications and divisions, and 11 summations and sub-

tractions appear to be necessary for each pixel at each instant of time. However, for a

given pixel, 0 and <|> are constants and therefore all functions of 0 and 0 such as cQc^

can be precomputed. Also, the rate of change of the motion parameters A J3 ,C and

0,,0r
is usually much lower than the rate of change of the image variables 7e, I

§
and

I
t

. Thus the update rate of the motion parameters can be significantly smaller than the

computation of L . For example, for a translation in the XY plane, and rotation about

the Z axis (i.e.. A, B, and W are zero), U, V, and C may be constants for some

period of time but 7e, 7^ and I
t
change. Practically, accelerations (either translational or

rotational) are limited due to mass (or inertia) constraints. Thus, any function of

0,0,<J>, ,0, yA yB ,C will typically have an update rate that is an order of magnitude

smaller than the rate of change of the pixel intensity (brightness).

Equation (32) can be rewritten as follows:

r 0 O(a 3 7, + a 4 /
<t>

+ a 5 70 )

—
T , I

wi)
a

i
Iq + ei2 I

$

where

a 0 = c$l

c
Q,
c
$
c&¥chs

Q,
c
$
sQ+shs Q (34)

d
\
— C^Cq Sq C^Jq^Cq (35)

^ 2 t7(j)(C(j^ C Q'S (JjCq+C ^

q

S

§

t

C (36)

a 3
= - (37)

a 4 = Cq(Asq-Bc q) (38)

a 5 = Cc tf-s ^(Bs q+Ac e) . (39)

By observing equation (33) it is clear that for given 7e , 7^
and I

t , at the fast sam-

pling rate there are only six multiplications, one division, and three summations per

pixel. (Note the the number of multiplication can be reduced to five by multiplying a 0

by a 3,a 4 and a 5 .)
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For each point in space there is a set of four equations that result in a looming

value of a point in space. The expression for L that corresponds to a pixel in the image

can be computed using a pixel-based processor, and special purpose computers may run

in parallel to compute looming values of all visible points in space. For each pixel

there may be a "fast" computer, and a "slow" computer. The "fast computer" extracts

/ q, 7 a, and I
t , and computes the looming L that corresponds to this pixel. The "slow"

computer generates a 0^ 1
,a 2»^ 3»^4 and a 5 from Equations (34)-(39) at a low update

rate. A suggestion for a structure of such a "multi-rate" computer can be found in [64].

The problem with this approach is that the optical flow is highly dependent on

both the translation and rotation of the camera, and so the expression for the looming L

in Equation (32) contains rotation parameters.

For the purpose of analyzing looming this approach is quite limited. Practically

there are other severe limitations which are related to the measurements of spatial and

temporal gradients.

6.1.4 SPECIAL CASE 1

In order to intuitively understand expression (32), we show a special case. Sup-

pose that the camera undergoes translation U and V in the instantaneous XY plane and

rotation C about the Z axis only, i.e., A = B = W = 0. Assume
<J>
= 0, i.e., the pixel

which is analyzed lies in the XY plane. Substituting these values in Equation (32)

results in the following expression for L :

(c 0 c 0+S 0 s o)(-It + Cl q)

L = (40)
(CqSq-SqCq)I 0

or (assuming 7e*0)

(c e(

c e+-s e, iS e)("
_® + C)

L =
(c Q,

sQ~s Q,
c q)

(41)

where Given that 0*C , Equation (41) is a solution for any point in the XY

plane when translating in this plane and rotating about the Z axis.
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6.1.5 SPECIAL CASE 2

For the case where the camera undergoes translation only along the optical axis,

the expression for looming for points in the X—Y plane becomes very simple, i.e..

L
e

cotQ
(42)

An alternative method for computing the optical flow is described in [53,64].

6.2. DIRECT CALCULATIONS OF LOOMING

(FROM RELATIVE RATE OF EXPANSION)

This approach deals with any relative motion between the camera and the object

It is based on measuring the looming at the image region (or object) level (rather than

the pixel level). The relative rate of expansion of an object in the image is propor-

tional to the looming as defined in section 2.

6.2.1 THE 3-D BALL SCENARIO

The concept of measuring looming from the relative rate of expansion can be

explained using a 3-D ball example. Figure 12 shows an observer moving relative to a

3-D ball. As a result, the projection of the ball on the retina may be different in size at

two different time instants t± and t 2 - Let the relative speed along the ball-observer

direction be It I, the radius of the ball r, and the distance from the center of the ball to

the observer R . At t-t\

sinp = ~ (43)
K

After At=t2-t\, i*e., at t=t2 :

Sin(|}+Ap) = (44)

For infinitesimally small At and by using lim —— = 1+x the last equation becomes
x->o l -x

sin(p+Ap) = X (45)

By subtracting Equation (43) from Equation (45), then dividing by At, and letting
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At—>0 we obtain:

dsinp

dt

r Itl

R 2
(46)

dR

Using the following relations: -- = sinp, •*== = - and = cosp ^- in

Equation (46) we obtain:

dR d§
dt _ _ dt

R tanP

and the expression for looming becomes:

L = " 4= "At = “In(smp)
R tanP dt

K

(47)

(48)

where dot denotes derivative with respect to time.

This means that the looming can be measured using p and P relative to the center

Aof the ball.

tanP
contains the information on the relative expansion of the projected

ball during fixation at the center of the ball. This also means (as detailed later) that a

retina which is constructed in a logarithmic fashion, i.e., the pixel length Ap is propor-

tional to tanP, will measure looming in a linear fashion independently of the size of

the object (as long as the retina fixates at the center of the object).

The above derivation of looming is based on a 2-D angle measurement of a pro-

jection of a ball. However, the extension to the projected area of a ball is simple. Rela-

tive change of area is also proportional to looming. We shall show next that

dA

dt

2A

dR

dt

R
- L (49)

where A is the projected area of the ball on an spherical image.

2 ft 2
The area occupied by a projected ball on a spherical image is A = 4rcsin (-F-)ri

where P is as defined in Figure 12, and is the radius of the sphere of the retina.
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is constant By computing

(divided by 2), we obtain:

dA

dt_

2A

dA

cU_

2

A

which is the relative change of the projected area

dp

—~r-. For small (3,

2tan|-
2

it
dt

it
_ dt

tanp
which has

been shown (Equation (48)) to be the expression for looming. Thus the relative change

of the projected area can be used to approximate looming values using Equation (49).

6.22 THE 2-D PLATE SCENARIO

We describe how to measure looming of a flying 2-D circular plate undergoing an

arbitrary six-degree-of-freedom motion. Figure 13 shows a sequence of images of a

two-dimensional plate. Note that the change in the projected area cannot be used to

measure looming. However, at each instant of time there is a plane which is perpendic-

ular to the line that connects the pinhole point of the camera with the center of the

plate (Figure 14). The intersection between the plane and the plate is a line (except for

one singular case where the intersection is a circle) whose projection is visible to the

camera. Since this line (which is also a diameter of the plate) is perpendicular to the

line that connects the camera with the plate, it will almost have the longest projection

(compared to all other diameters’ projections). The projection of this line can be meas-

ured. The relative change in length of this line can be used as a measure for looming.

Similar computations as described previously for a section of a ball hold here.

6.23 OTHER OBJECTS

The problem with this approach is that in many cases it is difficult or even impos-

sible to measure looming using the described method since a real environment is not

filled with 3-D balls or circular plates. In several cases, however, it is possible to get

good approximations of looming especially when points lie near the plane which is per-

pendicular to the optical axis.

6.3 QUALITATIVE MEASUREMENT OF LOOMING

Looming can be measured in qualitative terms. This means that instead of

measuring the exact value of looming, we may be interested if the looming value is
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above or below a threshold level. Alternatively, we may be interested to check if the

looming value is within a specific margin. Figure 15 shows what we mean by qualita-

tive looming (see also [33]). In Figure 15(a), 3-D space is divided into two regions.

One consists of all points inside an equal looming sphere, and the second region

corresponds to all points on or outside the equal looming sphere. Points inside this

sphere are considered to be in a "Danger Zone" since they produce "above threshold"

values of looming, while points on or outside the ball are in a "Safety Zone" since they

produce "below threshold" values of looming.

A more quantitative division of 3-D space is shown in Figure 15(b). Here the

space is divided into several regions, according to the range of looming values of

points in each region. We called these regions "Danger Zone", "High Risk Zone", and

"Safety Zone".

6.4 ON THE MEASUREMENT OF LOOMING WITH A LOGARITHMIC SEN-

SOR

In this section we show that it is "natural" to use a logarithmic sensor to measure

looming. (The results are highly related to neurobiologists’ observations about retinal

mapping [61]).

What is a "logarithmic sensor"? If the camera has a multiresolution imaging chip,

where the pixel’s radial size is approximately proportional to its distance from the opti-

cal axis, then it is called "logarithmic". Figure 16 shows a log-polar retina. This is

different from a linear-polar retina (Figure 17) where the pixel radial length is constant

(We wrote "approximately proportional" since it is not possible to measure uniquely

the distance from a finite length pixel to the optical axis.) Similarly, for a spherical

image, if the pixel’s angular size is proportional to the angle (or a function of the angle

e.g., sin(.)) between the optical axis and the line that connects the center of the sphere

with the pixel, it is also called a multiresolution logarithmic retina.

The relevant mathematical expression for the spherical retina (for the continuous

case) where the resolution is proportional to the angle from the optical axis is:

P
dlnP = (50)
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where P is the angle between the optical axis and the line that connects the center of

the sphere with a particular point on the image sphere. In practice since pixel size AfJ

is finite this expression becomes:

AlnP =^ (51)
P

Another example for a logarithmic retina is where dp is proportional to tanp. In

this case the relevant mathematical expression is:

(52)

and when the pixel size Ap is finite. Equation (52) becomes:

Aln(sinp) = Mi (53)

We have shown in section 6.2.1 that for the 3-D ball scenario (given that the opti-

cal axis of the camera passes through the center of the ball) the looming can be

obtained from the ratio —
tanp

(Equation (48)) independently of the camera rotation,

where P is the angle between the center of the ball and a point on the circular edge of

the ball. This means that by using the ln(sinp) retina (Figure 16, as opposed to the

linear retina of Figure 17) it is possible to measure looming from the expansion of the

projection of a ball in a simple way even if rotation is involved ( as long as the optical

axis passes through the center of the ball, i.e., the camera "fixates" at the center of the

ball). In other words, by constructing a retina as mathematically described in Equation

(52) for the continuous case, or as in Equation (53) for the discrete case, then motion

of a point in the image from pixel ring i to pixel ring i+ 1 corresponds to the same

looming value as motion of a point in the image from pixel j to pixel j+ 1 , and the

same as n times less the looming of a change from pixel k to k+n , for any positive

integers ijjc,n. In other words, the In(sin ) retina measures looming during fixation in

a linear way!

Note that the expression for looming of a 3-D ball (48) is equivalent to the

expression obtained for optical flow (42) for points on 3-D equal looming spheres when
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the camera undergoes translation only along the optical axis. (0 in Equation (42) is

measured from the X axis which is perpendicular to the optical axis, and p in Equation

(48) may be measured relative to the optical axis. Expressions (42) and (48) become

identical when substituting p = 9O°-0 and p=-0.) Also, the relative change in the

object’s size and the corresponding change in the pixels’ number on the In(sin) retina

are proportional as can be seen from Equations (48) and (49)). So far the existing

literature has shown how a logarithmic retina can be used for simplifying (i.e., lineariz-

ing) the measurement of the optical flow and time-to-contact from optical flow for a

camera undergoing translation only [65,68,69] . Here we showed that the same retina

can be used to simplify the measurement of looming of a point in translational motion

and for fixation on the center of a ball. Recently ([78]), several other advantages of the

logarithmic retina have been shown.

The derivation here is an extension of existing results and may be another advan-

tage for using fixation. Using this particular logarithmic mapping, the measurement of

looming becomes independent of the object’s size, and looming becomes linearly

mapped, i.e., different size balls located on the same equal looming surface result in the

same relative change in pixels of the logarithmic retina. Figure 18 shows two different

size balls which lie on the same equal looming sphere. Even though their projections

on the retina are different, their relative rate of expansion is the same. Using a fixating

logarithmic retina (Figures 19 and 20) (as described previously) their expansion in

terms of number of pixels is the same.

7. LOOMING AS A FUNCTION OF TIME

So far we have dealt with instantaneous looming. We now examine looming as a

function of time. As shown in Section 4.2 equal looming surfaces are spheres. The

physical size of each sphere is proportional to the instantaneous translational velocity,

the centers of the spheres lie on a line along the instantaneous velocity vector, and the

observer lies on the sphere surface. Also, the spheres are independent of the instan-

taneous rotational parameters.

Figure 21 shows what happens to these spheres as a function of time. Note that

their centers always lie on a line along the instantaneous translational vector and not on
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the optical axis. Figure 22 examines these spheres for a particular point "A" in space.

Assume a camera moving in constant speed along a straight line. As the camera

approaches the point "A" (for f<f4), the equal looming spheres containing this point

shrink i.e., produce higher values of looming. At a 0 = 45° angle as in Figure 8 (i.e., at

time instant t=t4) the sphere containing point "A" gets its minimum size which means

that the looming value is maximum. Then, when the camera translational vector is per-

pendicular to the line that connects the point "A" with the camera pinhole point (time

instant t=t 5), the sphere becomes a plane, i.e., the point "A" produces zero value of

looming. At 0 = -45° (at f=f 6) the looming value is minimum, and as the camera con-

tinues to move (t >t 6)the looming value approaches zero.

Figure 23 shows the values of looming of several points as a function of time.

Figure 23a shows a camera that undergoes both translation and rotation. We examine

the looming values for four different points: 1,2,3, and 4. The looming values are plot-

ted in Figure 23b. At time instant t = t
l

the looming values for all four points are

positive, and the looming value of point 2 gets its maximum value. At t = t2 , the

looming value of point 3 gets its maximum value since the angle formed by the instan-

taneous translation vector and the line that connects the pinhole point of the camera and

point 3 is 45°. At time close to t = f 3 the looming produced by point 4 gets a very

high positive value (which changes to a very high negative value at the time instant

immediately after t = r 3 ). At t = f 3 points 1, 2, and 3 are all on the same equal

looming sphere and point 1 produces a maximum looming value. Note that the loom-

ing values of points 1, 2, and 3 are the same at t = f3 as shown in Figure 23b since

they lie on an equal looming sphere.

Shortly after t = t 3 point 3 produces zero looming value. At t = r 4 point 3 pro-

duces minimum value of looming and point 2 produces zero looming value. At t = t$

point 2 produces minimum value of looming and point 1 produces zero value of loom-

ing. At t -t 6 points 1, 2, 3, and 4 produce the same value of looming and point 1

produces minimum value of looming. Note that looming values are independent of the

rotation of the camera. (The camera in Figure 23a was chosen to fixate on point 2.)



- 20 -

The case where a point moves relative to a camera with constant value of looming

can be described in two basic ways. In Figure 24a a point is moving in the XY plane.

At each instant of time, e.g., t
x , t2, 13 , and r4, the point is on a physically different

sphere, but since the looming values produced by the point are the same for all time

instants the point appears on the same equal looming sphere. In Figure 24b the coordi-

nates are scaled by a factor of Note that the relative translational velocity of the

point changes in order to keep a constant looming value at all time instants.

8. MORE ON LOOMING

8.1 LOOMING AND THE TIME-TO-CONTACT

As mentioned earlier, looming is different from the time-to-contact. It is related

more to the "two dimensional" time-to-contact concept [21]. According to Lee [9] any

point that lies on a plane which is perpendicular to the instantaneos translational motion

direction of the camera, will produce the same value of "time-to-contact" Tc (assuming

that the optical axis coincides with the direction of motion). This means that the time-

to-contact deals with depth. The derivation in [9] is valid only for rectilinear motion

(with no rotation) of the camera. Only recently [25,26] has it been extended to a more

general motion of the camera.

One problem with the time-to-contact approach is that points which lie on a single

perpendicular plane but are located far away from, or close to, the camera produce the

same value of T
c

even though they are not equally relevant to malting vision-based

behavioral decisions. The looming value of a point is related to range rather than depth.

Figures 25 and 26 illustrate the main difference between the time-to-contact value

of a point, and its looming value. All points that lie on a vertical plane will have the

same time-to-contact value. However, points on a sphere in front of the camera produce

the same looming value. Points 1,2, and 3 in Figure 26 have the same looming value

but different "time to contact" values. Points 2 and 4 have the same time-to-contact

value but different looming values. Points 4 and 5 have the same time-to-contact

values and the same looming values.
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8.2 LOOMING, ZOOMING, AND VIEWING

Note that since looming deals with the relative change of range the looming

values obtained from zooming or non-zooming cameras are the same, although the

images are different in these two cases. Also the looming perceived by a camera (#1

in Figure 27) is the same as that perceived by other cameras (e.g., #2, #3, and #4 in

Figure 27) that observe a monitor on which images from camera #1 are displayed

(regardless of the distance and location relative to the monitor) This is due to the fact

that the relative change in the area is the same from all points of view.

9. LOOMING AND THE EQUAL FLOW CIRCLES

9.1 THE EQUAL FLOW CIRCLES

This section deals with points in 3-D space that produce the same value of optical

flow. For a particular motion of the camera point with a specific value of optical flow

lie on a circle. We briefly review this result.

It has been shown in previous work [63] that if the camera motion vectors t and CD

are:

t = (u,v,of

and

(0= (0,0,C)
r

.

Then the optical flow expression in spherical coordinates (Figure 11) is:
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(54)

From Equation set (54), the points in space that result from constant 0 (regardless of

the value of
<J>)

form a cylinder of infinite height whose equation is

X+
2(C+0)

Y-
U

2(C+0) 2(C+0)

U
2(C+0)

, as displayed in Figure 28a,

and the points in space that result from <j>=0 (regardless of the value of 0) are those that
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lie on (a) a plane whose equation is Y-——X, or (b) a plane whose equation is Z=0

(i.e., the XY plane) as pictorially described in Figure 28b. The intersection of the

cylinder with the planes is the desired solution (Figure 28c), i.e., the points in space

that result in 0 = constant and <j> = 0 optical flow values. Analytically, the following

are the solutions (disallowing the case of X - 0 and Y - 0 which corresponds to an

anomalous situation):

p
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2
* ^
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2

1
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to J

1
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—
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(55)

(56)

These solutions are drawn in Figure 29. Solution (55) is an equation of a circle that lies

in the XY plane. The radius of the circle is

V U

- r "

V
2

4_
U

1

[
2(C+0)^ 2(C+0)

^

and its center

is at

2(C+0) 2(C +0)
. The circle is tangent to the camera translation vector at

the origin.

Solution (56) is a straight line perpendicular to the XY plane and intersects this

V U
plane at the point

C +0 C+0

defined in solution (55).

r , 0 . This intersection point also lies on the circle

The meaning of these solutions is the following: all points in 3-D space that lie on

the circle or the line described by solutions (55) and (56) and which are visible (i.e.,

unoccluded and in the field of view of the camera) produce the same instantaneous

optical flow 0 and zero instantaneous optical flow <j). We call the circle on which equal

flow points lie the Equal Flow Circle (EFC). Two sets of EFCs are illustrated in Fig-

ure 30. Figure 30a shows EFCs for the case where the camera undergoes instantane-

ous translation only. The label of each circle represents the optical flow 0 in the image

that corresponds to points on this circle. Here, there is a straight line (a circle with an

infinite radius) that corresponds to zero flow in the image. Figure 30b shows EFCs for
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the case where the camera undergoes both instantaneous translation and rotation. Here,

there is a circle with finite radius that produces zero flow (9 = 0 in the image domain).

We called this circle the Zero Flow Circle (ZFC).

9.2 THE EFCs and ZFCs AS A FUNCTION OF TIME

As the camera moves through 3-D space, the EFCs move with it Figure 31 is an

example of a camera path with some EFCs. At each instant of time, the radii of the

EFCs are a function of the instantaneous motion parameters t and go. The locations of

the EFCs are such that they always contain the origin of the camera coordinate system

(the same as the camera pinhole point), are tangent to the instantaneous translation vec-

tor t, and are perpendicular to the instantaneous rotation vector co. Each ZFC lies to the

left or right of the translation vector depending on whether the instantanous rotation is

positive or negative, respectively.

9.3 LOOMING - EFCs MAPPING

As described above, there are equal looming circles in the X-Y plane which are

sections of the equal looming spheres. These circles are orthogonal to the EFCs. This

observation suggests a 2-D mapping that consists of two orthogonal families of circles

as shown in Figure 32.

A point in 2-D space can be mapped in camera coordinates by specifying two

numbers. One is the optical flow of the point, and the other is the looming value of the

point.

Figure 33 and 34 show how a segment in the new domain (segment 11,12,22,21 in

Figure 33) can be mapped to another orthogonal grid (segment 11,12,22,21 in Figure

34). In Figure 34 the horizontal axis corresponds to the optical flow, and the vertical

axis corresponds to the value of looming. Note that the vertical line for which 9 = 0

corresponds to the Zero Flow Circle.

Regions for obstacle avoidance and other behavior related tasks can be defined

using the looming-EFCs domain. In Figure 35 a qualitative partition of the 2-D plane

is shown. A region called "danger zone" can be used to qualitatively detect obstacles. A

more quantitative partition is shown in Figure 36 where space is divided into "danger
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zone", "high risk zone", and "safety zone".

Clearly, the mapping can be extended to 3-D using, for example, equal flow

cylinders and equal looming spheres.

10. DISCUSSION

In this paper we presented a new and mainly quantitative approach for analyzing

looming. Using the concept of the equal looming spheres we showed how space can

be perceived during motion. Several methods for measuring looming of simple 3-D

objects were presented. It has been shown that using a logarithmic retina the looming

computations become simpler. We also showed how beneficial fixation can be to sim-

plify the measurement of looming. This analysis complements the qualitative under-

standing of looming and fixation.

The equal looming spheres can be thought of as properties of space rather than

properties of points in the image domain.

The coordinate system that we chose is a convenient one. However, the angular

velocities of points in space are independent of their representation in the image. Other

image coordinate systems may be chosen, in particular, (for practical purposes) the

image domain may be planar. (Obviously, an appropriate conversion from the spherical

coordinate system should be used).

The approach for measuring looming using relative rate of expansion is quite lim-

ited. It works mainly for sphere and sphere-like objects, or sections of these objects.

Computing looming from image flow by the method of Horn and Schunck [36]

has the advantage of simplicity. Unfortunately, it tends to produce noisy and inaccurate

results. There are four sources of noise and errors: First, the sampled data system

dl dl i dl , . , XT
approximations to — , — and , are subject to digitization noise and Nyquist

dt dQ d <{>

dl
sampling frequency limitations. Second, except in the vicinity of brightness edges, —

dt

is small, and may be zero. Division by small numbers magnifies errors. Third, the sen-

sitivity of photodetectors in any array is not uniform. The difference in signal from

two adjacent photo-detectors is thus not necessarily an accurate measure of the
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difference in illumination. Thus range from image flow by the Horn and Schunck

method tends to be inaccurate for smooth images, and unreliable for sharply focused

natural images.

Computing looming from image flow by the method of cross-correlation [53] can

be much more accurate and noise free. It is, however, more complicated and computa-

tionally intensive.

11. FUTURE WORK

Future work will focus on measures of performance of the above algorithms in an

environment filled with a variety of natural objects. Tests will be made that simulate

tasks such as obstacle avoidance. We plan to exploit the equal looming surfaces con-

cept in a vision based navigation algorithm for a real-time robot system.
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Figure 23: Looming as a Function ofTime



-58 -

Figure

24(a):

Keeping

Constant

Looming

Value



-59-

Looming

Value



-60-

Figure

25:

Looming

and

Time-to-Contact



-61 -



-62-

Figure

27:

Observing

a

Screen



-63-

(a)

Cb)

(c)

Figure

28:

(a)

Equal

0

Cylinders

(b)

Equal

jf=

0

Planes

(c)

IntersectionBbetween

0

Cylinders

and

jf=0

Planes



-64-

\
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Figure 31: EEC'S as a Function ofTime
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Figure 32 EFC'S-Looming Mapping
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